بوستینگ یک فرا الگوریتم ترکیبی در حوزه یادگیری ماشین است که برای کاهش عدم توازن و همچنین واریانسبه کار می‌رود.[۱] این روش در یادگیری با نظارت مورد استفاده قرار گرفته و از خانواده الگوریتم‌های یادگیری ماشین به شمار می‌رود. این تکنیک، روشی برای تبدیل سیستمهای یادگیری ضعیف به قوی بر اساس ترکیب نتایج طبقه بندهای مختلف است.[۲] ایده اولیه این روش بر اساس سؤال مطرح شده توسط کیرنس و شجاع (۱۹۸۸, ۱۹۸۹) به وجود آمده است:[۳][۴] آیا می‌توان با ترکیب مجموعه‌ای از سیستم‌های یادگیری ضعیف یک سیستم یادگیری قوی ایجاد نمود؟

سیستم یادگیری ضعیف، یادگیرنده‌ای است که به عنوان یک طبقه بند، تنها کمی بهتر از حالت تصادفی عمل می‌نماید (برچسب نمونه‌ها را بهتر از تصادفی حدس می‌زند). در مقابل یادگیرنده قوی طبقه‌بندی است که به تنهایی می‌تواند برچسب نمونه‌ها را خوبی پیش بینی نماید.

تقویت الگوریتم‌های

هرچند که بوستینگ در قالب الگوریتک قرار ندارد ولی اکثر الگوریتم‌هایی که بر پایه بوستینگ طراحی شده‌اند، یادگیرنده‌های ضعیف را در به صورت تکرار شونده آموزش داده و به مجموعه قبلی اضافه می‌نماید تا در نهایت به یک طبقه بند قوی درست یابد. یادگیرنده‌های ضعیف در حین اضافه شدن به مجموعه، وزن دهی می‌شوند که این وزن دهی معمولاً بر اساس میزان دقت در طبقه‌بندی نمونه هاست. پس از اضافه شدن هر طبقه بند، نمونه‌های موجود (داده‌ها) نیز وزن دهی می‌گردند (وزنشان اصلاح می‌گردد). وزن دهی نمونه‌ها به صورتی است که در هر مرحله، وزن نمونه‌هایی که به صورت صحیح طبقه‌بندی می‌شوند کاهش یافته و وزن نمونه‌هایی که به درستی طبقه‌بندی نشده‌اند، بیشتر می‌شود تا در مراحل بعدی (توسط یادگیرنده‌های جدید) بیشتر مورد توجه بوده و با دقت بیشتری طبقه‌بندی گردند؛ بنابراین تمرکز یادگیرنده‌های ضعیف جدید، بیشتر بر روی داده‌های خواهد بود که سیستم در مراحل قبلی قادر به طبقه‌بندی صحیح آنها نبوده است.

تاکنون الگوریتم‌های بوستینگ زیادی به وجود آمده‌اند ولی نسخه اصلی این الگوریتم‌ها توسط Robert Schapire و Yoav Freund ارائه شده است که Adaptive نبودهو امکان استفاده کامل از مزایای یادگیرنده‌های ضعیف را ندارد. بعدها این دو نفر الگوریتم AdaBoost که یک الگوریتم بوستینگ سازگار (Adaptive) بود را ارائه نموده و جایزه معتبر گودل را برنده شدند.

برگرفته از ویکی پدیا

  1. Leo Breiman (1996). “BIAS, VARIANCE, AND ARCING CLASSIFIERS”. TECHNICAL REPORT. Retrieved 19 January 2015. Arcing [Boosting] is more successful than bagging in variance reduction
  2. پرش به بالا Zhou Zhi-Hua (2012). Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC. p. 23. ISBN 978-1439830031. The term boosting refers to a family of algorithms that are able to convert weak learners to strong learners
  3. پرش به بالا Michael Kearns(1988); Thoughts on Hypothesis Boosting, Unpublished manuscript (Machine Learning class project, December 1988)
  4. پرش به بالا Michael Kearns; Leslie Valiant (1989). “Crytographic limitations on learning Boolean formulae and finite automata”. Symposium on Theory of computing (ACM) 21: 433–444.doi:10.1145/73007.73049. Retrieved 18 January 2015.
[thrive_leads id='1265']
author-avatar

حدود علی ایوبی

من علی ایوبی هستم متخصص و مدرس بازاریابی اینترنتی، به کسانی که نیاز به دیجیتال مارکتینگ خود را دارند کمک می کنم که بتوانید سیستم بازاریابی آنلاین خود را راه اندازی کنند به نظرم من دلیل شکست شکست کسب و کارها نداشتن سیستمی برای جذب مخاطب(ترافیک) و تبدیل آن به مشتری(تبدیل) است روش کار من استفاده از سیستم قیف های فروش(Funnel) است.

بازگشت به لیست
0 0 رای ها
امتیازدهی به مقاله
اشتراک در
اطلاع از
guest
0 نظرات
بازخورد (Feedback) های اینلاین
مشاهده همه دیدگاه ها